Rabu, 05 November 2014

Distribusi Binomial

Distribusi Probabilitas
  Kunci aplikasi probabilitas dalam statistik adalah memperkirakan terjadinya peluang/probabilitas yang dihubungkan dengan terjadinya peristiwa tersebut dalam beberapa keadaan.
Jika kita mengetahui keseluruhan probabilitas dari kemungkinan outcome yang terjadi, seluruh probabilitas kejadian tersebut akan membentuk suatu distribusi probabilitas.

  Distribusi binomial adalah salah satu distribusi probbabilitas diskrit yang paling sering digunakan dalam analisis statistic modern. Di bidang teknik, distribusi ini erat kaitannya dengan pengendalian kualitas (quality control).

  Dalam teori probabilitas dan statistika, distribusi binomial adalah distribusi probabilitas diskret jumlah keberhasilan dalam n percobaan ya/tidak (berhasil/gagal) yang saling bebas, dimana setiap hasil percobaan memiliki probabilitas p. Eksperimen berhasil/gagal juga disebut percobaan bernoulli. Ketika n = 1, distribusi binomial adalah distribusi bernoulli. Distribusi binomial merupakan dasar dari uji binomial dalam uji signifikansi statistik.
  Distribusi ini seringkali digunakan untuk memodelkan jumlah keberhasilan pada jumlah sampel n dari jumlah populasi N. Apabila sampel tidak saling bebas (yakni pengambilan sampel tanpa pengembalian), distribusi yang dihasilkan adalah distribusi hipergeometrik, bukan binomial. Semakin besar N daripada n, distribusi binomial merupakan pendekatan yang baik dan banyak digunakan.
  Distribusi Binomial adalah suatu distribusi probabilitas yang dapat digunakan bilamana suatu proses sampling dapat diasumsikan sesuai dengan proses Bernoulli. Misalnya, dalam perlemparan sekeping uang logam sebanyak 5 kali, hasil setiap ulangan mungkin muncul sisi gambar atau sisi angka. Begitu pula, bila kartu diambil berturut-turut, kita dapat memberi label "berhasil" bila kartu yang terambil adalah kartu merah atau ”gagal” bila yang terambil adalah kartu hitam. Ulangan-ulangan tersebut bersifat bebas dan peluang keberhasilan setiap ulangan tetap sama, yaitu sebesar 0,5. (Ronald E. Walpole)
  Distribusi Binomial biasa dirumuskan seperti :
B (x;n,p) = ncxpxqn-x
Dimana :
x = 0,1,2,3,.....,n
n = banyaknya ulangan
x = banyaknya kerberhasilan dalam peubah acak x

p = Peluang berhasil dalam setiap ulangan
q = Peluang gagal, dimana q = 1 - p dalam setiap ulangan

Contoh :

Dadu dilemparkan 5 kali, diharapkan keluar mata 6 dua kali, maka kejadian ini dapat ditulis b(2,5,1/6)  x=2, n=5, p=1/6

Eksperimen Binomial

  Satu atau serangkaian eksperimen dinamakan eskperimen binomial bila dan hanya bila eksperimen yang bersangkutan terdiri dari percobaan-percobaan Bernoulli atau percobaan-percobaan binomial.
  Jika hanya berminta untuk mengetahui apakah hasil suatu percobaan disebut gagal atau sukses, maka ruang sampel yang merumuskan percobaan diatas harus memuat 2 unsur saja yaitu, unsur B bagi sukses dan unsur G bagi gagal. Singkatnya, probabilita kedua unsur diatas dapat dinyatakan sebagai,
p ({B}) = p, p ({G}) = 1 - p = q
      Dimana : p + q = 1 dan 0 < p <1 

      Eksperimen ini merupakan n kali percobaan Bernoulli, sehingga harus memenuhi kondisi-kondisi berikut:
1.
    Jumlah percobaan n adalah konstanta yang telah ditentukan sebelumnya (dinyatakan sebelum eksperimen dimulai).
2.
    Setiap pengulangan eksperimen, biasa disebut percobaan (trial), hanya dapat menghasilkan satu dari dua keluaran yang mungkin sukses ataupun gagal.
3.
    Probabilitas sukses p, dan demikian juga probabilitas gagal q = 1 – p selalu konstan dalam setiap percobaan.
4.    Setiap percobaan saling bebas secara statistic, yang berarti keluaran suatu percobaan tidak berpengaruh pada keluaran percobaan lainnya.

Syarat Distribusi Binomial

1.    Jumlah trial merupakan bilangan bulat  Contoh melambungkan coin 2 kali, tidak mungkin2 ½ kali.
2.
    Setiap eksperiman mempunya idua outcome (hasil). Contoh:sukses/gagal,laki/perempuan, sehat/sakit,setuju/tidaksetuju.
3.
    Peluang sukses sama setiap eksperimen.

Contoh: Jika pada lambungan pertama peluang keluar mata H/sukses adalah ½, pada lambungan seterusnya juga ½. Jika sebuah dadu, yang diharapkan adalah keluar mata lima, maka dikatakan peluang sukses adalah 1/6, sedangkan peluang gagal adalah 5/6.Untuk itu peluang sukses dilambangkan p, sedangkan peluang gagal adalah (1-p) atau biasa juga dilambangkan q, di mana q = 1-p.

Ciri-ciri Distribusi Binomial

Distribusi Binomial dapat diterapkan pada peristiwa yang memiliki ciri-ciri percobaan Binomial atau Bernoulli trial sebagai berikut :
1.    Setiap percobaan hanya mempunyai 2 kemungkinan hasil : sukses(hasil yang dikehendakai, dan gagal(hasil yang tidak dikehendaki)
2.
    Setiap percobaan bersifat independen atau dengan pengembalian.
3.
    Probabilita sukses setiap percobaan harus sama, dinyatakan dengan p. Sedangkan probabilita gagal dinyatakan dengan q, dan jumlah p dan q harus sama dengan satu.4.    Jumlah percobaan, dinyatakan dengan n, harus tertentu jumlahnya.

Penerapan Distribusi Binomial

Beberapa kasus dimana distribusi normal dapat diterapkan yaitu :

1.    Jumlah pertanyaan dimana anda dapat mengharapkan bahwa terkaan anda benar dalam ujian pilihan ganda.
2.
    Jumlah asuransi kecelakaan yang harus dibayar oleh perusahaan asuransi.
3.
    Jumlah lemparan bebas yang dilakukan oleh pemain basket selama satu musim.

Rata-rata dan Ragam Distribusi Binomial

Rata – rata μ = n . p
Ragam σ2 = n . p . q
n : ukuran populasi
p : peluang berhasil dalam setiap ulangan
q : peluang gagal, dimana q = 1-p dalam setiap ulangan


Read More ->>

PENGGUNAAN MICROSOFT MATHEMATICS

Microsoft Mathematics
            Microsoft Mathematics adalah perangkat lunak sejenis kalkulator namun memiliki fitur yang lebih lengkap dan memiliki kemampuan untuk menjabarkan secara detail langkah demi langkah penyelesaian suatu persoalan dalam disiplin ilmu pasti, tidak hanya matematika namun untuk ilmu fisika dan kimia. Namun penjabaran yang sangat detail hanya ditemui pada persoalan matematika. Salah satu keistimewaan program ini adalah disediakan secara gratis oleh Microsoft Corporation serta telah mendukung antar muka sistem operasi 32-bit dan 64-bit.
            Soal-soal matematika yang dapat diselesaikan oleh alat ini meliputi pra-aljabar, aljabar, trigonometri dan kalkulus. Dan tentu saja tidak berhenti sampai disitu, aplikasi buatan microsoft ini juga dapat menyelesaikan soal-soal fisika bahkan kimia dilengkapi dengan fitur grafik. Bisa juga mengkonversi dari satu sistem unit yang lain, mengevaluasi segitiga, dan juga memecahkan sistem persamaan.
            Jika tidak disalah gunakan, Microsoft Mathematics fungsinya sangat luar biasa. Satu set aplikasi matematika ini dapat membantu kita jika tidak mengerti bagaimana cara memecahkan suatu soal yang rumit. Setelah soal tersebut kita tulis, kita dapat mengerti penyelesaiannya dan siswa dapat memahami konsep-konsep dalam mengerjakan soal tersebut, jadi tidak perlu lagi mencari guru privat ataupun bimbingan belajar yang notabene mengeluarkan lebih banyak dana. Mungkin, bagi para guru atau dosen juga perlu untuk memiliki aplikasi ini untuk diterapkan pada saat proses belajar mengajar dikelas demi kemajuan pendidikan indonesia kedepannya.
Microsoft Mathematics dapat mengerjakan berbagai fungsi matematika, seperti:
·   Melakukan penghitungan matematika standard seperti akar dan logaritma
·   Menyelesaikan operasi persamaan dan juga pertidaksamaan
·   Menyelesaikan aturan segitiga
·   Melakukan konversi dari suatu satuan ke bentuk satuan lain
·   Melakukan penghitungan trigonometri, seperti sinus, atau cosinus.
·   Operasi matriks dan vektor
·   Statistika dasar
·   Operasi kompleks
·    Menggambar grafik 2D maupun 3D dalam diagram kartesius
·   Operasi turunan, integral, dan limit
·    Menyelesaikan rumus-rumus dan persamaan umum

Microsoft Mathematics sangatlah luas fungsinya untuk operasi-operasi persoalan matematika. Dengan begitu sangat banyak keuntngan yang di dapat dari aplikasi tersebut. Bagi orang-orang yang kesusahan dalam pemecahan persoalan kalkulus, aljabar, matematika diskrit, geometri dll, aplikasi ini sangat berguna sekali. Terlepas dari itu semua, aplikasi ini hanya bisa digunakan jika pengguna juga menguasai akan penggunaan dan pengoperasian aplikasi tersubut. Tanpa adanya pengetahuan tentang cara penggunaan aplikasi tersebut, maka pengguna juga tidak dapat mengoptimalkan fungsi dari microsoft mathematic ini dengan sempurna.


Read More ->>

Selasa, 21 Oktober 2014

Operasi Aljabar pada Bentuk Akar

Penjumlahan dan Pengurangan

Penjumlahan dan pengurangan pada bentuk akar dapat dilakukan jika memiliki suku-suku yang sejenis.


kesimpulan :
jika a, c = Rasional dan b ≥ 0, maka berlaku
a√b + c√b = (a + c)√b
a√b – c√b = (a – c)√b

Perkalian dan Pembagian

Contoh :
Tentukan hasil operasi berikut :
Gambar:43.jpg
jawab :




Gambar:44.jpg

Perpangkatan

Kalian tentu masih ingat bahwa (a^)” = a^’. Rumus tersebut juga berlaku pada operasi perpangkatan dari akar suatu bilangan.
Contoh:
Gambar:45.jpg

Operasi Campuran

Dengan memanfaatkan sifat-sifat pada bilangan berpangkat, kalian akan lebih mudah menyelesaikan soal-soal operasi campuran pada bentuk akarnya. Sebelum melakukan operasi campuran, pahami urutan operasi hitung berikut.
  • Prioritas yang didahulukan pada operasi bilangan adalah bilangan-bilangan yang ada dalam tanda kurung.
  • Jika tidak ada tanda kurungnya maka
  1. pangkat dan akar sama kuat;
  2. kali dan bagi sama kuat;
  3. tambah dan kurang sama kuat, artinya mana yang lebih awal dikerjakan terlebih dahulu;
  4. kali dan bagi lebih kuat daripada tambah dan kurang, artinya kali dan bagi dikerjakan terlebih dahulu.
Contoh :
Gambar:46.jpg

Merasionalkan Penyebut

Dalam perhitungan matematika, sering kita temukan pecahan dengan penyebut bentuk akar, misalnya Gambar:47.jpg
Agar nilai pecahan tersebut lebih sederhana maka penyebutnya harus dirasionalkan terlebih dahulu. Artinya tidak ada bentuk akar pada penyebut suatu pecahan. Penyebut dari pecahan-pecahan yang akan dirasionalkan berturut-turut adalah Gambar:48.jpg
Merasionalkan penyebut adalah mengubah pecahan dengan penyebut bilangan irasional menjadi pecahan dengan penyebut bilangan rasional.

Penyebut Berbentuk √b

Jika a dan b adalah bilangan rasional, serta √b adalah bentuk akar maka pecahan a/√b dapat dirasionalkan penyebutnya dengan cara mengalikan pecahan tersebut dengan √b/√b .
Gambar:49.jpg
Contoh :
Sederhanakan pecahan berikut dengan merasionalkan penyebutnya!
Gambar:50.jpg
jawab :
Gambar:51.jpg

Penyebut Berbentuk (a+√b) atau (a+√b)

Jika pecahan-pecahan mempunyai penyebut berbentuk (a+√b) atau (a+√b) maka pecahan tersebut dapat dirasionalkan dengan cara mengalikan pembilang dan penyebutnya dengan sekawannya. Sekawan dari (a+√b) adalah (a+√b) adalah dan sebaliknya.
Bukti
Gambar:52.jpg
Contoh :
Rasionalkan penyebut pecahan berikut.
Gambar:53.jpg
jawab :
Gambar:54.jpg

Penyebut Berbentuk (√b+√d) atau (√b+√d)

Pecahan tersebut dapat dirasionalkan dengan mengalikan pembilang dan penyebutnya dengan bentuk akar sekawannya, yaitu sebagai berikut.
Gambar:55.jpg
Contoh:
Selesaikan soal berikut!
Gambar:56.jpg
Jawab :
gambar:57.jpg
Read More ->>

Kamis, 16 Oktober 2014

TEORI BILANGAN


1. Keterbagian

Kita telah mengetahui bahwa 13 dibagi 5 hasil baginya 2 dan sisanya 3 dan ditulis sebagai :
\frac{13}{5} = 2 + \frac {3}{5}  atau 13 = 2 x 5 + 3
Secara umum, apabila a bilangan bulat dan b bilangan bulat positif, maka ada tepat satu bilangan bulat q dan r sedemikian hingga :
a = qb + r ,   0 < r < b
dalam hal ini, q disebut hasil bagi dan r sisa pada pembagian “a dibagi dengan b”. Jika r = 0 maka dikatakan a habis dibagi b dan ditulis b|a. Untuk a tidak habis dibagi b ditulis b ditulis b Å‚ a.
Sifat-sifat keterbagian :
  1. a|b dan b|c maka a|c
  2. ab|c maka a|c dan b|c
  3. a|b dan a|c maka a|(bx + cy) untuk sembarang bilangan bulat x dan y.
Di sini akan dibuktikan sifat (1). Pembuktian sifat (2) dan (3) diserahkan kepada pembaca.
Bukti sisfat (1)
a|b maka b = ka
b|c maka c = lb = l (kl)a maka a|c.
Di bawah ini adalah kaidah-kaidah menentukan keterbagian suatu bilangan yang cukup besar.
  1. Keterbagian oleh 2″
    Suatu bilangan habis dibagi 2n jika n bilangan terakhir dari bilangan tersebut habis dibagi 2n.
    A1. Untuk n = 1 berarti suatu bilangan habis dibagi 2 jika angka terakhir dari bilangan tersebut habis dibagi 2.
    A2. Untuk n = 2 berarti suatu bilangan habis dibagi 4 jika 2 bilangan terakhir dari bilangan tersebut habis dibagi 4
    A3. Untuk n = 3 berarti suatu bilangan habis dibagi 8 jika 3 bilangan terakhir dari bilangan tersebut habis dibagi 8.
    Yang akan dibuktikan di sini adalah kaidah A1. Pembuktian kaidah A2 dan A3 diserahkan kepada pembaca.
Bukti kaidah A1
Misalkan bilangan itu :
a = …a3 a2 a1 a0
= 10(a3 a2 a1) + a0
Karena 10 (….a3 a2 a1) habis dibagi 2 maka agar a habis dibagi 2 maka haruslah a0 habis dibagi 2.
Contoh soal 1
Tentukan apakah 173332 habis dibagi oleh :
a). 2 b). 4 c). 8
pembuktian :
a). Karena 2|2 maka 2|173332
b). Karena 4|32 maka 4|173332
c). Karena 8 Å‚ 332 maka 8 Å‚ 173332
  1. Keterbagian 3, 9, dan 11
    Misalkan bilangan yang akan dibagi adalah a = an an-1 an-2 … a1 a0.
    B1. Bilangan a habis dibagi 3 jika jumlah angka-angkanya (an + an-1 + … + a1 + a0) habis dibagi 3
    B2. Bilangan a habis dibagi 9 jika jumlah angka-nagkanya (an + an-1 + … + a1 + a0) habis dibagi 9
    B3. Bilangan a habis dibagi 11 jika jumlah silang tanda ganti angka-angkanya (an – an-1 + an-2 + … ) habis dibagi 11
    Yang akan dibuktikan di sini adalah kaidah B1. Pembuktian kaidah B2 dan B3 diserahkan kepada pembaca.
Bukti kaidah B1.
a = an an-1 … a1 a0
= an X 10n + an-1 X 10n-1 + … + a1 X 10 + a0 X 100
= an X (9 + 1)n + an-1 X (9 + 1)n-1 + … + a1 X (9 + 1) + a0
= an[9n + n . 9n-1 + ... + 9n] + an + an-1 [9n-1 + (n-1)9n-2 + ... + 9(n-1)] + an-1 + … + 9a1 + a1 + a0
Dapat dipilih menjadi dua bagian. Bagian pertama adalah jumlah semua suku yang merupakan kelipatan 9 yang dilambangkan sebagai K(a) dan bagian kedua adalah jumlah angka-angka :
Q(a) = an + an-1 + …
+ a1 + a0
Maka :    a = K(a) + Q(a)
Karena 3 | K(a) maka agar 3|a haruslah 3 | Q(a)
Read More ->>

Jumat, 10 Oktober 2014

BILANGAN BULAT

Himpunan bilangan bulat adalah himpunan bilangan yang terdiri dari himpunan bilangan positif (bilangan asli), bilangan nol, dan bilangan bulat negatif.

URUTAN BILANGAN BULAT
kamu akan menemukan bahwa semakin ke kanan, bilangan bulat pada garis bilangan tersebut semakin besar, sebaliknya semakin ke kiri, bilangan bulat pada garis bilangan semakin kecil. Misalnya:
  • -2 terletak di sebelah kiri 0 sehingga -2 < 0;
  • 0 terletak di sebelah kanan -1 sehingga 0 > -1;
  • -5 terletak di sebelah kiri -3 sehingga -5 < -3;
  • -4 terletak di sebelah kanan -6 sehingga -4 > -6.
LAWAN BILANGAN BULAT 
  • Setiap bilangan bulat mempunyai tepat satu lawan yang juga merupakan bilangan bulat
  • Dua bilangan bulat dikatakan berlawanan, apabila dijumlahkan menghasilkan nilai nol.
    a + (-a) = 0
Misalnya :
  1. Lawan dari 4 adalah -4, sebab 4 + (-4) = 0
  2. Lawan dari -7 adalah 7, sebab -7 + 7 = 0
  3. Lawan dari -2 adalah 2, sebab -2 + 2 = 0
  4. Lawan dari 3 adalah -3, sebab 3 + (-3) = 0
  5. Lawan dari 10 adalah -10, sebab 10 + (-10) = 0
  6. Lawan dari 0 adalah 0, sebab 0 + 0 = 0
OPERASI BILANGAN BULAT
Penjumlahan dan Pengurangan Bilangan Bulat

d. Menjumlahkan bilangan bulat negatif dengan bilangan positif.
Misalnya :
-5 + 8 = 3
-4 + 9 = 5

Perkalian Bilangan Bulat
Perkalian adalah penjumlahan berulang sebanyak bilangan yang dikalikan.
Contoh :
2 x 4 = 4 + 4 = 8
3 x 5 = 5 + 5 + 5 = 15

Sifat-sifat perkalian suatu bilangan

a. Perkalian bilangan positif dengan bilangan positif, hasilnya positif.
Contoh:
1) 4 x 5 = 5 + 5 + 5 + 5 = 20
2) 7 x 8 = 56
3) 12 x 15 = 180
b Perkalian bilangan positif dengan bilangan negatif, hasilnya negatif.
   Contoh:
    1) 4 x (-5) = (-5) + (-5) +(-5) +(-5) = -20
    2) 7 x (-8) = -56
    3) 12 x (-15) = -180
c. Perkalian bilangan negatif dengan bilangan positif, hasilnya negatif.
    Contoh:
    1) -4 x 5 = -(5 + 5 + 5 + 5) = -20.
    2) -7 x 8 = -56
    3) -12x 15 = -180
d. Perkalian bilangan negatif dengan bilangan negatif, hasilnya positif.
    Contoh:
    1) -4 x (-5) = -[-5 + (-5) + (-5) + (-5)] = -[-20] = 20
    2) -7 x (-8) = 56
    3) -12 x (-15) = 180

Pembagian bilangan bulat
Pembagian merupakan operasi kebalikan dari perkalian
Contoh
12 : 4 = 3, karena 4 x 3 = 12 atau 3 x 4 = 12
42 : 7 = 6, karena 7 x 6 = 42 atau 6 x 7 = 42 

Sifat-sifat pembagian bilangan bulat
a. Pembagian bilangan positif dengan bilangan positif, hasilnya positif
    Contoh
    1) 63 : 7 = 9
    2) 143 : 11 = 13
b. Pembagian bilangan positif dengan bilangan negatif, hasilnya negatif
    Contoh:
    1) 63 : (-9) = -7
    2) 72 : (-6) = -12
c. Pembagian bilangan negatif dengan bilangan positif, hasilnya negatif
    Contoh:
    1) -63 : 7 = -9
    2) -120 : 10 = -12
d. Pembagian bilangan negatif dengan bilangan negatif, hasilnya positif.
    Contoh:
    1) -72 : (-8) = 9
    2) -120 : (-12) = 10


SIFAT OPERASI HITUNG BILANGAN BULAT

Sifat komutatif
Sifat komutatif (pertukaran) pada penjumlahan dan perkalian.
a + b = b + a
a x b = b x a, berlaku untuk semua bilangan bulat 

Contoh:
1) 2 + 4 = 4 + 2 = 6
2) 3 + 5 = 5 + 3 = 8
3) 4 x 2 = 2 x 4 = 8
4) 3 x 2 = 2 x 3 = 6


Sifat asosiatif
Sifat asosiatif (pengelompokan) pada penjumlahan dan perkalian.
(a + b) + c = a + (b+c)
(a x b) x c = a x (bxc), berlaku untuk semua bilangan bulat 
Contoh:
1) (2+4) + 6 = 2 + (4+6) = 12
2) (3+6) + 7 = 3 + (6+7) = 16
3) (3x2) x 4 = 3 x (2x4) = 24
4) (3x5) x 2 = 3 x (5x2) = 30


Sifat distributif (penyebaran)
a x (b + c) = (a x b) + (a x c), yang berlaku untuk semua bilangan bulat. 
Contoh
1) 4 x (5 + 2) = (4 x 5) + (4 x 2) = 28
2) 5 x (7 + 3) = (5 x 7) + (5 x 3) = 50


Operasi Campuran
Aturan dalam mengerjakan operasi campuran adalah sebagai berikut.
1 .Operasi dalam tanda kurung dikerjakan terlebih dahulu.
2. Perkalian dan pembagian adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
3. Penjumlahan dan pengurangan adalah setara, yang ditemui terlebih dahulu dikerjakan terlebih dahulu.
4. Perkalian atau pembagian dikerjakan lebih dahulu daripada penjumlahan atau
    pengurangan. 

Contoh
1. a. 20 + 30 – 12 = 50 – 12 = 38
    b. 40 – 10 - 5 = 30 – 5 = 25
    c. 40 - (10 - 5) = 40 – 5 = 35  

2. a. 600 : 2O : 5 = 30 : 5 = 6 
    b. 600 : (20 : 5) = 600 : 4 = 150
    c. 5 x 8 : 4 = 40 : 4 = 10 

3. a. 5 x (8 + 4) = 5 x 12 = 60
    b. 5 x 8 -4 = 40 – 4 = 36
    c. 5 x (8 – 4) = 5 x 4 = 20 
  
Read More ->>
Diberdayakan oleh Blogger.

Followers